

RBSP EFW AXB

Specification

RBSP EFW_AXB_001

Jeremy McCauley University of California, Berkeley Revision C

Signature Page

AXB Approval: Jeremy McCauley, RBSP EFW AXB Lead Systems Approval: Michael Ludlam, RBSP EFW Systems Engineer Science Approval: Dr.John Bonnell, RBSP EFW CoI

NAS5-01072 File: RBSP_EFW_AXB_001_Specification.doc 10/28/2009 3:35:00 PM

Table of Contents

0.	APPLICABLE DOCUMENTATION	3
1.	INTRODUCTION	4
2.	DESIGNATION	4
3.	MECHANICAL	4
3.1	ICD COMPLIANCE:	4
3.2	MATERIALS AND CONSTRUCTION:	4
3.3	LENGTH:	
3.4	PACKAGING:	
3.5	MOTOR DRIVE MECHANISM	
3.6	BLENDS AND FILLETS	
3.7	HARNESS MECHANICAL TERMINATION	
3.7.1	1 8	
<i>3.7.2</i> 3.8	DAD Spring	
3.8 3.9	FASTENER LOCKING FEATURES	
3.10	GLUE JOINTS	
3.10		
3.10		
3.10		
3.10	*	
3.11	RADIATION ENVIRONMENT	
4.	ELECTRICAL	7
4.1	HARNESSING:	7
4.1 4.2	Harnessing:	7 7
4.1 4.2 4.3	HARNESSING: Conductivity: Isolation:	7 7 8
4.1 4.2	HARNESSING: CONDUCTIVITY: ISOLATION: Switches	7 7 8 8
4.1 4.2 4.3 4.4	HARNESSING: Conductivity: Isolation:	7 7 8 8
4.1 4.2 4.3 4.4 4.5	HARNESSING: CONDUCTIVITY: ISOLATION: Switches Heaters:	7 7 8 8 8
4.1 4.2 4.3 4.4 4.5 4.6	HARNESSING:	7 7 8 8 8 8 8 9
4.1 4.2 4.3 4.4 4.5 4.6 4.7	HARNESSING:	7 7 8 8 8 8 8 9 9
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	HARNESSING:	7 7 8 8 8 8 8 9 9
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	HARNESSING:	77888889999
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	HARNESSING:	77888889999
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 5. 6.	HARNESSING:	778888899999999
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 5. 6. 6.	HARNESSING:	77888889999 9 9
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 5. 6. 6.1 6.2	HARNESSING:	77888889999 9 99
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 5. 6. 6.	HARNESSING: CONDUCTIVITY: ISOLATION: SWITCHES HEATERS: MOTORS: FRANGIBOLTS: GROUNDING DIALECTRIC WITHSTANDING VOLTAGE. ENABLE PLUG: CONTAMINATION CONTROL TESTING ENVIRONMENTAL TEST PLAN THERMAL VACUUM TESTING.	77888889999 9 9999
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 5. 6. 6.1 6.2 6.3	HARNESSING:	77888889999 9 9 9999
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 5. 6. 6.1 6.2 6.3 6.4	HARNESSING:	77888889999 9 999990
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 5. 6. 6.1 6.2 6.3 6.4 6.5	HARNESSING:	77888889999 9 999990

Change Record

Date	Revision	Description	
6/18/2008	-	Draft	
7/11/2008	1	Added DWC suggestions (IRD, DDD, etc.)	
8/28/2008	А	IRD Updates, Packaging Updates, Released for iPDR	
9/29/2009	В	Removed Ground Strap, Requirements, Epoxy, Thread Locking Updated,	
		Released for iCDR.	
10/28/2009	С	Synchronized IRD Requirements to text.	

0. APPLICABLE DOCUMENTATION

The following documents are applicable to the extent specified herein. In the event of a conflict, the requirements of this document shall govern.

7417_9096	APL Flow Down Matrix		
RBSP_EFW_PA_004			
7417_9018	RBSP EMECP - Electromagnetic Environment Control Plan		
RBSP_AXB_MEC_001	AXB Assembly		
RBSP_AXB_ICD_001	Interface Control Drawing		
RBSP_EFW_AXB_002W	RBSP EFW AXB Wiring Schematic		
RBSP_EFW_SYS_001	RBSP EFW Instrument Requirements Document		
RBSP_EFW_PA_001B	RBSP EFW Performance Assurance Implementation Plan		
RBSP_EFW_PA_005A	RBSP EFW Contamination Control Plan		
RBSP_EFW_PA_007A	RBSP EFW Bakeout Plan		
RBSP_EFW_TE_001	RBSP EFW Verification, Validation, Test, and Calibration Plan		
SSL_CCP_010	Clean Room Gowning Procedure		
SSL_CCP_011	Clean Room Guidelines		
SSL_CCP_020	Mechanical Part Cleaning Procedure		
THM_SPB_MEC_001	SPB Assembly		

1. Introduction

The RBSP EFW Axial Boom (AXB) follows a long line of deployable axial antennas now flying on a number of spacecraft. Many of the modules in RBSP EFW are unchanged from those who have logged more than 60 years of on-orbit operation. Specifically, the RBSP AXB is an adaptation of the design of the THEMIS AXB with addition of new locking features for the deployment assist device (DAD) and a motor drive mechanism for in-flight length control during deployment.

This document is intended as a written appendage to the IRD maintaining important details not recorded in the IRD. Specifications will be listed by type (mechanical, electrical, etc.) and discussed as necessary.

2. Designation

Two identical AXB in Tube Assemblies will be produced; one each for Spacecraft A and B [EFW-21, -22, -212]. These assemblies will consist of a Tube Assembly (which mounts to the spacecraft structure) and two (2) identical AXB Assemblies. The AXBS are designated as follows for the EFW Instrument:

Boom 5 is the AXB which is sunward.

Boom 6 is the AXB which is anti-sunward.

3. Mechanical

3.1 ICD Compliance:

The AXB in Tube Assemblies will comply with the mechanical Interface Control Drawing, RBSP-AXB-ICD-001 [EFW-23, -54, -90].

3.2 *Materials and Construction:*

The AXB in Tube Assemblies will be built with SSL standard materials and practices [EFW-1, -2, -7, -8, -202, -12, -24, -103, -106, -107, -108, -137, -211].

3.3 Length:

Designed as up to 14 meters from center of sphere to center of sphere [EFW-209, -51, -52]. Final length will be determined on orbit by an integral motor driven deployment device. Required accuracy of final deploy length is to be within 1 cm; this accuracy demands a minimum of 16 turns counter clicks per turn of the wire spool. The Flight Spool will have a total of 24 turns counter clicks per turn.

Length per click (on to on) is as follows:

l/click (in)	l/click (cm)	L at end of row
0.21	0.52	6.66
0.22	0.57	5.29
0.24	0.61	3.65
0.26	0.66	1.89
	0.21 0.22 0.24	0.22 0.57 0.24 0.61

3.4 Packaging:

See IRD and RBSP-AXB-ICD-001. Final packaging is a M55J Graphite Epoxy tube of 5.8" ID. Spacing between decks is 43.5". Aluminum flanges will be bonded to the ends of the Tube to interface with the deck. Due to CTE mismatch between the Tube and the SC, a flexure is incorporated into the –Z mount. Current design specifications show a need for 0.054" at 52C dT. Mounting and flatness tolerances are as shown in the ICD, RBSP-AXB-ICD-001.

(m)

3.5 Motor Drive Mechanism

This unit is adapted from the THEMIS Spin Plane Booms (SPBs), see THM-SPB-MEC-001. All details of the motor housing itself are similar save the orientation of the two screws on the outside cavity to hold the cap with the electrodes passing through. These two screw holes had to be clocked 90 degrees from the THEMIS SPB design. Identical mu-metal shielding is required.

The gear ratio has been changed for the RBSP EFW to 1000:1 from 3000:1. This creates a correspondingly smaller gear housing and therefore motor housing overall. Note: It is expected that these motors overrun slightly. It is also expected that these motors cannot be back driven due to the high gear ratio; ETU testing confirmed this.

3.6 Blends and Fillets

Many of the blends and fillets shown in the SolidWorks model to protect wires should be added by hand after machining for simplicity. These blends and fillets are called out on manufacturing drawings or assembly procedures, as appropriate.

3.7 Harness Mechanical Termination

3.7.1 Tip Piece Bonding

As the harness enters the tip piece, it terminates and bonds to the tip piece as follows:

1) The metallic braid and Tefzel overwrap ends as the harness enters the Wire Ferrule (RBSP-AXB-MEC-172).

- 2) The Kevlar braid continues into the Wire Ferrule and is bonded with epoxy.
- 3) Where the Wire Ferrule opens into the larger cavity, the Kevlar braid ends.
- 4) The wires are left to attach to the connector at the hinge with sufficient service loop to remove the connector from the Wire Ferrule if necessary yet small enough service loop that it fits within the Wire Ferrule.

3.7.2 Spool Bonding

The harness will be deployed from the spool at one end; the other end will go into the center of the spool where it will terminate in the following way:

- 1) The metallic braid and Tefzel overwrap will end as it enters the Spool (RBSP-AXB-MEC-522).
- 2) Within the Spool, the wire will wrap around the Kevlar Terminator (RBSP-AXB-MEC-524) about ¼ turn and be tied off to the 1/16" diameter pin.
- 3) The wires will then be exposed and soldered to the leads of the AirFlyte slipring to leave the Spool.

3.8 DAD Spring

The DAD Spring is designed from the NEWSTAR DAD springs using the spreadsheet "NuStar Telescopic SPRING DESIGN.xls". Final parameters are as follows:

Material: 302 SS Wire Diameter: 0.023 inch OD: 0.276 inch # of Active Coils: 200 Free Height: 24.05 inches Solid Height: 4.65 inches Stowed Height: 5.570 inches Force at Stowed Height: 2.17 pounds Deployed Height: 10.508 inches Force at Deployed Height: 1.59 pounds

3.9 Fastener Locking Features

Every fastener is required to have redundant locking features. For this instrument, the following locking features will both be employed for every fastener:

- 1) Proper tightening of all fasteners to appropriate torque levels as calculated using the spreadsheet "Bolt Torque Calculator.xls" as developed by Dr. Pankow, SSL,
- 2) and Spiralock Taps or Inserts as appropriate.

There are machined threads at larger diameters than the standard fasteners. These will utilize redundant locking features that are determined by the location and application. A list of these threads and their locking features is below.

- 1) Hinge Nut, proper torque, stake threads at final installation to Spacecraft,
- 2) Hinge Connector Retainer, proper torque, stake threads,
- 3) Whip Nut, proper torque, stake after F1 environments,
- 4) Preamp Post Nut, proper torque, stake threads.

3.10 Glue Joints

3.10.1 Whip

The Whip glue joints should be made with Hysol 9309NA.

3.10.2 DAD

The DAD glue joints should be made with Hysol 9309NA.

3.10.3 Stacer Tip Piece

The Stacer Tip Piece glue joints should be made with Hysol 9309NA.

3.10.4 Omnetics Connectors

The Omnetics Connectors should be bonded with Uralane/Arathane 5753 Staking Compound.

3.11 Radiation Environment

The Radiation environment imposed by the mission requires all parts to withstand radiation doses of 10 Mrad [EFW-1, -6, -7, -8]. Standard mechanical part materials will withstand this environment. However, coatings and finishes have been screened for suitability, as has the harness.

4. Electrical

4.1 Harnessing:

The AXB Assemblies will be harnessed with connectors to provide functionality and interface to the IDPU according to standard SSL processes and procedures [EFW-56, -61, -65, -66, -68, -100, -101].

4.2 Conductivity:

There will be no isolated conductors and exposed isolators will be minimized [EFW-133, -135]. Exposed isolators will be approved on a case by case basis.

MicroLube (Electro-less Nickel Plating with Teflon Impregnate) will be tested on the prototype unit to provide both lubrication and a conductive coating on moving

parts. Plating must have at least 10% phosphorous content to be sufficiently non-magnetic.

The AirFlyte slipring housing and each end of the shaft must be grounded.

4.3 Isolation:

Major subsystems of the AXB will be isolated from one another. Each subassembly will have the ability to be either grounded or driven to a specific potential. Wire attach points must be provided.

Isolated subassemblies are as follows: 1) DAD, motor housing and overall package, 2) stacer, 3) hinge assembly ("guard" on THEMIS), 4) whip ("usher" on THEMIS), 5) preamp (PA) board, and 6) sphere.

Hard Black Anodize coating is considered sufficient isolation between the rollers of the Roller Nozzles and the stacer so long as the thickness is sufficient.

4.4 Switches

Each AXB will have a total of three (3) sense switches to show: whip deployment, stacer motion from stowed configuration, and turns of the cable spool.

Each Frangibolt will have two (2) switches (one per power service) to cut off power once deployment has occurred.

The Motor will have one (1) end of wire (EOW) switch to cut off power once the wire is at its end of travel.

All switches will be Honeywell 1HM19.

4.5 Heaters:

No heaters are required for the AXB in Tube Assemblies [EFW-69].

4.6 Motors:

One Globe Motor, part number 43A153-1 per M43M371, will be used to deploy the stacer harness [EFW-74].

4.7 Frangibolts:

One Frangibolt, part number FC2-16-31SR2, will be used to actuate the Caging Mechanism and one to release the Stacer in the AXB in Tube Assemblies [EFW-72, -73].

4.8 Grounding

There is a metal to metal contact of each AXB unit to the spacecraft. No ground strap is required.

4.9 Dialectric Withstanding Voltage

A 1000V Dielectric Withstanding Voltage test end-to-end (prior to connecting the Preamp) will be run after internal harness installation since some parts are not rated to 1000V and are not easy to test at the component level (notably the Omnetics connectors). The Epoxy for bonding the Omnetics connectors was chosen to meet this requirement.

4.10 Enable Plug:

An enable plug will be included which will provide both a safety against accidental ground deployment and also an interface for GSE and ground calibration [EFW-92]. Flight Enable pugs will be Alodined. Ground or Science Enable Plugs will be Red Anodized.

5. Contamination Control

The hardware will be built with methods that control and verify contamination as required by RBSP_EFW_PA_005A [EFW-132]. Standard SSL procedures for cleaning and cleanroom activities will be used.

6. Testing

6.1 Environmental Test Plan

The AXB Assemblies and the Tube Assemblies will experience an environmental test sequence as detailed in the EDTRD and the RBSP EFW Verification, Validation, Test, and Calibration Plan [EFW-136].

6.2 Thermal Vacuum Testing

A thermal vacuum test will be preformed to demonstrate survival and operational test extremes are met [EFW-201, -77, -80].

6.3 Bakeout

A bakeout of the hardware shall be performed as required by RBSP_EFW_PA_007A.

6.4 Runout Testing

A runout test will be preformed to demonstrate alignment requirements are met [EFW-202, -9, -10, -11, -203, -54a].

6.5 Frangibolt Logs

The frangibolts have an actuation log that captures firing time, reset length, voltage and current settings, etc.

Initial review of the THEMIS procedures indicate actuation times on the order of 2 minutes. However, early data shows actuation times as low as 5 seconds. Data from the logs will be used to provide an estimate of timing by environment, but additional data is required to make such an estimate accurate.

6.6 Science Calibration

A Science Calibration will be preformed to calibrate the AXB Assemblies [EFW-200].

7. RBSP_EFW_SYS_001 Instrument Requirements Document (IRD) Flowdown

Below are the lines from the IRD that relate specifically to the AXB Mechanical design (From RBSP_EFW_SYS_001, Rev. J).

ID	Req. Title	Prio rity	Requirement Body or Section Heading
			3 Functional Requirements
			3.1 Functional, performance and general design requirments
EFW-1	Instrument Design life	shall	be designed for a total lifetime duration of 2 years plus 60 days.
EFW-200	Instrument Calibration	shall	be calibrated prior to launch, and be designed to accommodate additional in-flight calibration
EFW-6	Instrument Orbit Inclination Operability	shall	be capable of operating in an orbit with an inclination of $10^{\circ} \pm 0.25^{\circ}$.
EFW-7	Instrument Orbit Perigee Operability	shall	be capable of operating in an orbit where perigee altitude is between 500 km and 675 km (TBR).
EFW-8	Instrument Orbit Apogee Operability	shall	be capable of operating in an orbit where apogee altitude is between 30,050 km and 31,250 km (TBR).
EFW-201	Instrument Accommodation of Observatory Sun Off-Point Angle (Component)	shall	shall be capable of collecting required science measurements under the condition where the off-pointing angle between the spin axis of each observatory and the Sun-Earth line during nominal operations does not exceed 25 degrees North or South of the ecliptic plane, or 25 degrees East or West in the ecliptic plane, where "north" and "south" are with respect to an ecliptic coordinate system.
EFW-202	Instrument Accommodation of Observatory Sun Off-Point Angle (Composite)	shall	be capable of collecting required science measurements under the condition where the total off-pointing angle between the spin axis of each observatory and the Sun-Earth line during nominal operations is greater than 15 degrees, and does not exceed 27 degrees.
EFW-9	Instrument Accommodation of Observatory Operational Spin Rate Range	shall	be capable of operating nominally within an observatory spin rate range of no less than 4 rpm and no more than 6 rpm.
EFW-10	Instrument Accommodation of Observatory Selected Operational Spin Rate	shall	be capable of collecting required science measurements at a specific, optimal spin rate selected for both observatories that is within the specified allowable range
EFW-11	Instrument Accommodation of Observatory Selected Spin Rate Stability	shall	be capable of collecting required science measurements at an observatory spin rate that is maintained to within +/- 0.25 rpm of the in-flight selected value, except during maneuvers.

EFW-203	Instrument Accommodation of Observatory Commissioning Spin Rate Range	shall	be capable of accommodating an observatory spin rate during commissioning period activities within a range between 3 RPM (TBR) and 15 RPM (TBR).
EFW-12	Instrument Accommodation of Unattended Mission Operations	shall	be designed to accommodate periods of unattended mission operations (unstaffed MOC) during the operational phase of the mission of up to TBD hours
EFW-21	EFW Instrument Complement	shall	consist of four orthogonally oriented, boom- mounted spin-plane boom-mounted sensors, an Electronics Box, and two axial boom mounted sensors with harness as defined in the Spacecraft to EFW ICD.
EFW-22	Functionally Identical EFW Instrument Suites	shall	be functionally identical.
EFW-23	EFW - Spacecraft ICD Compliance	shall	comply with the EFW-to-Spacecraft interface control documents (ICDs).
EFW-24	EFW Instrument Availability	shall	be designed to be available for the collection of its required measurements at least 99% of the time during the operational phase of the mission
EFW-209	EFW Spin Axis Measurement Sensitivity Validty	shall	meet Spin Axis measurement sensitivity requirements outside time periods defined as follows: the interval where the aft axial boom is shadowed by the spacecraft or solar panels, and 25 seconds after the end of such periods.
EFW-51	Measure Spin Axis DC Electric Field (Survey)	shall	 measure axial electric field components (survey), as follows: frequency range: DC to 15Hz; magnitude range: 2 mV/m - 500 mV/m; cadence: 32 vectors/second; sensitivity: 4 mV/m or 20% for R > 3.5 Re, 6 mV/m or 20% for 3.5 Re > R > 2.5 Re, 12 mV/m or 20% for R < 2.5 Re.
EFW-52	Measure Spin Axis DC Electric Field (Burst)	shall	 measure axial electric field components (burst), as follows: frequency range: DC to 256 Hz; magnitude range: 0.4 - 500 mV/m; cadence: 512 samples per second; sensitivity: 1 mV/m or 10% @ 50 Hz (TBR).
			Required Components to Achieve Above
EFW-54	EFW Axial E-Field Booms	shall	be capable of deploying 7 meters with an E- Field sensor preamp at the end capable of measuring E-Fields to 400 kHz
EFW-54a	EFW Axial E-Field Booms	shall	Deploy the AXB sensors within +/- 1 degree of the AXB deployment system axis

EFW-56	EFW Harnessing	shall	connect the SPB, AXB, IDPU, EMFISIS/MAG and EMFISIS/SCM units together as detailed in the ICDs
EFW-61	EFW Power Control	shall	contain circuitry to open SPB and AXB doors and deploy sensors
			3.2 Power allocations and related requirements
EFW-65	EFW Main Power Max Voltage	shall	tolerate without damage a maximum input voltage of 40V indefinitely as defined in the ICD
EFW-66	EFW Main Power Turn Off	shall	tolerate without damage having power removed without notice as defined in the ICD
EFW-68	EFW AXB Deployment Power	shall	not exceed 4.0 Amps from the EFW AXB Deployment Service
EFW-69	EFW Survival Heaters	shall	accommodate survival heaters up to 1/2 nominal power at 22V bus voltage, or approximately 113 Ohms if necessary.
			3.3 Performance budget sub-allocations with respect to system budgets
EFW-72	EFW AXB Whip Release Power	shall	not exceed 2.0 Amps at 28V
EFW-73	EFW AXB Stacer Release Power	shall	not exceed 2.0 Amps at 28V
EFW-74	EFW AXB Motor Power	shall	not exceed 0.2 Amps at 28V (1.5A startup)
			3.4 Operational requirements
EFW-77	EFW AXB Operational Temp Range	shall	perform as designed from -25 to +55C (TBR)
EFW-80	EFW AXB Survival Temp Range	shall	survive without damage from -30 to +60C (TBR)
			3.6 Interfaces to the spacecraft bus
EFW-90	EFW AXB ICD Compliance	shall	comply with the requirements and constraints imposed by all relevant instrument-to- spacecraft interface control documents (ICDs).
			3.8 System test Interfaces
EFW-92	AXB Signal Test Input	shall	provide a connector for test input to the sensor accessible when the top and bottom of the spacecraft are accessible.
			3.10 Fault detection and correction considerations/requirements
EFW-100	EFW AXB Deployment Enable	shall	not deploy AXB booms or fire AXB actuators without the AXB and Main power ON.
			3.11 Redundancy description
EFW-101	EFW Boom Pair Redundancy	shall	have separate supplies for each preamp boom axis

			3.12 Mass allocation
EFW-103	EFW Total Mass	shall	The EFW shall not exceed the total allocated mass budget of 31.62kg (or as allocated in RBSP System Mass Budget).
EFW-106	EFW AXB Mass	shall	not exceed 3.40 kg
EFW-107	EFW AXB Tube Mass	shall	not exceed 1.29 kg
EFW-108	EFW Harness Mass	shall	not exceed 4.06kg
			3.15 Contamination control requirements
EFW-132	Instrument Compliance with Contamination Control Plan	shall	comply with the requirements and constraints imposed by the RBSP Observatory Contamination Control Plan, APL document no. 7417-9011
EFW-133	Instrument Compliance with EM Environment Control Plan	shall	comply with the requirements and constraints imposed by the RBSP Electromagnetic Environment Control Plan, APL document no. 7417-9018.
EFW-135	EFW ESC Control	shall	comply with the UCB Electrostatic Cleanliness (ESC) Plan
EFW-136	Instrument Compliance with Environmental Design and Test Requirements Document	shall	comply with the requirements and constraints imposed by the RBSP Environmental Design and Test Requirements Document, APL document no. 7417-9019.
EFW-137	EFW Quality Assurance	shall	comply with the RBSP Performance Assurance Implementation Plan, as modified by the Compliance Matrix
EFW-211	Instrument Range Safety	shall	comply with all relevant requirements and constraints imposed by AFSPC 91-710, Range Safety User Requirements Manual.
EFW-212	Observator Naming Convention	shall	use an observatory naming convention, as follows: Observatory A is the top observatory in the stacked configuration for launch; Observatory B is the bottom observatory in the stacked configuration for launch.